报告时间:2023年5月16日上午9:00-10:00
报告地点:37000cm威尼斯明德主楼1016(腾讯会议ID:622-223-830)
报告嘉宾:张原
报告题目:On Geometries of Finitary Random Interlacements
报告摘要:
In this talk, we discuss geometric properties of Finitary Random Interlacements (FRI) FI^{u,T} in Z^d. We prove that with probability one FI^{u,T} has no infinite connected component for all sufficiently small fiber length T>0, and a unique infinite connected component for all sufficiently large T. At the same time, although FRI may not enjoy global stochastic monotonicity with respect to T, we prove the existence of a critical T_c(u) for all large u. Moreover, we find the chemical distance on the infinite cluster is of the same order as Euclidean distance as well as a local uniqueness result in the supercritical regime.
Joint work(s) with E.B. Procaccia, R. Rosenthal, S. Hernandez-Torres J. Ye, Y. Xiong, Z. Cai, and X. Han.
个人简介:
张原,2015年美国杜克大学取得博士学位,现任37000cm威尼斯副教授。主要研究方向:随机几何、随机相互作用粒子系统、随机传染病动力学模型。研究工作发表在PNAS,Trans AMS, SIMA, AoAP, SPA, M3AS等期刊。
扫描下方二维码报名↘
所有消息会在两个群中同步通知
请大家不要重复加群~